IMGT Web resources

 Here you are: IMGT Web resources > IMGT Education > Tutorials > Sida et virus de l'immunodéficience de type-1 (VIH-1)

Références bibliographiques



Akoulitchev, S., Chuikov, S., and Reinberg, D. (2000). TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature: 407, 102-6.

Akoulitchev, S., Makela, T. P., Weinberg, R. A., and Reinberg, D. (1995). Requirement for TFIIH kinase activity in transcription by RNA polymerase II. Nature: 377, 557-60.

Albright, S. R., and Tjian, R. (2000). TAFs revisited: more data reveal new twists and confirm old ideas. Gene: 242, 1-13.

Ard, P. G., Chatterjee, C., Kunjibettu, S., Adside, L. R., Gralinski, L. E., and McMahon, S. B. (2002). Transcriptional Regulation of the mdm2 Oncogene by p53 Requires TRRAP Acetyltransferase Complexes. Mol Cell Biol: 22, 5650-61.

Armstrong, J. A., Bieker, J. J., and Emerson, B. M. (1998). A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell: 95, 93-104.

Arthur, L. O., Bess, J. W., Jr., Sowder, R. C., 2nd, Benveniste, R. E., Mann, D. L., Chermann, J. C., and Henderson, L. E. (1992). Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science: 258, 1935-8.


Bannister, A. J., and Kouzarides, T. (1996). The CBP co-activator is a histone acetyltransferase. Nature: 384, 641-3.

Bannister, A. J., Miska, E. A., Gorlich, D., and Kouzarides, T. (2000). Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol: 10, 467-70.

Barboric, M., Nissen, R. M., Kanazawa, S., Jabrane-Ferrat, N., and Peterlin, B. M. (2001). NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell: 8, 327-37.

Barlev, N. A., Liu, L., Chehab, N. H., Mansfield, K., Harris, K. G., Halazonetis, T. D., and Berger, S. L. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell: 8, 1243-54.

Benkirane, M., Chun, R. F., Xiao, H., Ogryzko, V. V., Howard, B. H., Nakatani, Y., and Jeang, K. T. (1998). Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J Biol Chem: 273, 24898-905.

Berger, S.L. (2002). Histone modifications in transcriptional regulation. Curr Opin Genet Dev: 12, 142-8.

Berkhout, B., and Jeang, K. T. (1992). Functional roles for the TATA promoter and enhancers in basal and Tat- induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol: 66, 139-49.

Berkhout, B., Silverman, R. H., and Jeang, K. T. (1989). Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell: 59, 273-82.

Bhoite, L. T., Yu, Y., and Stillman, D. J. (2001). The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II. Genes Dev: 15, 2457-69.

Bieniasz, P. D., Grdina, T. A., Bogerd, H. P., and Cullen, B. R. (1998). Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. Embo J: 17, 7056-65.

Boyes, J., Byfield, P., Nakatani, Y., and Ogryzko, V. (1998). Regulation of activity of the transcription factor GATA-1 by acetylation. Nature: 396, 594-8.

Brand, S. R., Kobayashi, R., and Mathews, M. B. (1997). The Tat protein of human immunodeficiency virus type 1 is a substrate and inhibitor of the interferon-induced, virally activated protein kinase, PKR. J Biol Chem: 272, 8388-95.

Braunstein, M., Sobel, R. E., Allis, C. D., Turner, B. M., and Broach, J. R. (1996). Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol: 16, 4349-56.

Brivanlou, A. H., and Darnell, J. E., Jr. (2002). Signal transduction and the control of gene expression. Science: 295, 813-8.

Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. Y., and Allis, C. D. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell: 84, 843-51.

Bunick, D., Zandomeni, R., Ackerman, S., and Weinmann, R. (1982). Mechanism of RNA polymerase II--specific initiation of transcription in vitro: ATP requirement and uncapped runoff transcripts. Cell: 29, 877-86.

Burke, T. W., and Kadonaga, J. T. (1996). Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev: 10, 711-24.

Burley, S. K., and Roeder, R. G. (1996). Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem: 65, 769-99.


Calnan, B. J., Biancalana, S., Hudson, D., and Frankel, A. D. (1991). Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev: 5, 201-10.

Camaur, D., Gallay, P., Swingler, S., and Trono, D. (1997). Human immunodeficiency virus matrix tyrosine phosphorylation: characterization of the kinase and its substrate requirements. J Virol: 71, 6834-41.

Campanero, M. R., and Flemington, E. K. (1997). Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc Natl Acad Sci U S A: 94, 2221-6.

Carteau, S., Hoffmann, C., and Bushman, F. (1998). Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J Virol: 72, 4005-14.

Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C., and La Thangue, N. B. (2001). Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol: 3, 667-74.

Chang, H. K., Gallo, R. C., and Ensoli, B. (1995). Regulation of Cellular Gene Expression and Function by the Human Immunodeficiency Virus Type 1 Tat Protein. J Biomed Sci: 2, 189-202.

Chen, D., and Zhou, Q. (1999). Tat activates human immunodeficiency virus type 1 transcriptional elongation independent of TFIIH kinase. Mol Cell Biol: 19, 2863-71.

Chen, H., Lin, R. J., Schiltz, R. L., Chakravarti, D., Nash, A., Nagy, L., Privalsky, M. L., Nakatani, Y., and Evans, R. M. (1997). Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell: 90, 569-80.

Cho, H., Orphanides, G., Sun, X., Yang, X. J., Ogryzko, V., Lees, E., Nakatani, Y., and Reinberg, D. (1998). A human RNA polymerase II complex containing factors that modify chromatin structure. Mol Cell Biol: 18, 5355-63.

Chodosh, L. A., Fire, A., Samuels, M., and Sharp, P. A. (1989). 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J Biol Chem: 264, 2250-7.

Chun, R. F., and Jeang, K. T. (1996). Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T-cell lymphotropic virus I and HIV-1. J Biol Chem: 271, 27888-94.

Chun, R. F., Semmes, O. J., Neuveut, C., and Jeang, K. T. (1998). Modulation of Sp1 phosphorylation by human immunodeficiency virus type 1 Tat. J Virol: 72, 2615-29.

Clapham, P. R., and McKnight, A. (2001). HIV-1 receptors and cell tropism. Br Med Bull: 58, 43-59.

Col, E., Caron, C., Seigneurin-Berny, D., Gracia, J., Favier, A., and Khochbin, S. (2001). The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem: 30, 30.

Col, E., Gilquin, B., Caron, C., and Khochbin, S. (2002). Tat-controlled protein acetylation. J Biol Chem: 1, 1.

Conaway, J. W., Shilatifard, A., Dvir, A., and Conaway, R. C. (2000). Control of elongation by RNA polymerase II. Trends Biochem Sci: 25, 375-80.

Conaway, R. C., Brower, C. S., and Conaway, J. W. (2002). Emerging roles of ubiquitin in transcription regulation. Science: 296, 1254-8.

Cramer, P. (2002). Multisubunit RNA polymerases. Curr Opin Struct Biol: 12, 89-97.

Cramer, P., Bushnell, D. A., and Kornberg, R. D. (2001). Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science: 292, 1863-76.

Cujec, T. P., Okamoto, H., Fujinaga, K., Meyer, J., Chamberlin, H., Morgan, D. O., and Peterlin, B. M. (1997). The HIV transactivator TAT binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes Dev: 11, 2645-57.

Cullen, B. R. (1998). HIV-1 auxiliary proteins: making connections in a dying cell. Cell: 93, 685-92.


Dahmus, M. E. (1996). Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J Biol Chem: 271, 19009-12.

Daujat, S., Neel, H., and Piette, J. (2001). MDM2: life without p53. Trends Genet: 17, 459-64.

De Rubertis, F., Kadosh, D., Henchoz, S., Pauli, D., Reuter, G., Struhl, K., and Spierer, P. (1996). The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature: 384, 589-91.

Demarchi, F., d'Adda di Fagagna, F., Falaschi, A., and Giacca, M. (1996). Activation of transcription factor NF-kappaB by the Tat protein of human immunodeficiency virus type 1. J Virol: 70, 4427-37.

Demarchi, F., D'Agaro, P., Falaschi, A., and Giacca, M. (1993). In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. J Virol: 67, 7450-60.

Demarchi, F., Gutierrez, M. I., and Giacca, M. (1999). Human immunodeficiency virus type 1 tat protein activates transcription factor NF-kappaB through the cellular interferon-inducible, double- stranded RNA-dependent protein kinase, PKR. J Virol: 73, 7080-6.

Deng, L., de la Fuente, C., Fu, P., Wang, L., Donnelly, R., Wade, J. D., Lambert, P., Li, H., Lee, C. G., and Kashanchi, F. (2000). Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology: 277, 278-95.

Dingwall, C., Ernberg, I., Gait, M. J., Green, S. M., Heaphy, S., Karn, J., Lowe, A. D., Singh, M., and Skinner, M. A. (1990). HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. Embo J: 9, 4145-53.

Dingwall, C., Ernberg, I., Gait, M. J., Green, S. M., Heaphy, S., Karn, J., Lowe, A. D., Singh, M., Skinner, M. A., and Valerio, R. (1989). Human immunodeficiency virus 1 tat protein binds trans-activation- responsive region (TAR) RNA in vitro. Proc Natl Acad Sci U S A: 86, 6925-9.

Dotson, M. R., Yuan, C. X., Roeder, R. G., Myers, L. C., Gustafsson, C. M., Jiang, Y. W., Li, Y., Kornberg, R. D., and Asturias, F. J. (2000). Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci U S A: 97, 14307-10.

Dvir, A., Conaway, J. W., and Conaway, R. C. (2001). Mechanism of transcription initiation and promoter escape by RNA polymerase II. Curr Opin Genet Dev: 11, 209-14.

Dvir, A., Conaway, R. C., and Conaway, J. W. (1997). A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc Natl Acad Sci U S A: 94, 9006-10.


El Kharroubi, A., Piras, G., Zensen, R., and Martin, M. A. (1998). Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol Cell Biol: 18, 2535-44.

el Kharroubi, A., and Verdin, E. (1994). Protein-DNA interactions within DNase I-hypersensitive sites located downstream of the HIV-1 promoter. J Biol Chem: 269, 19916-24.

Emerman, M., and Malim, M. H. (1998). HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science: 280, 1880-4.

Espinosa, J. M., and Emerson, B. M. (2001). Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell: 8, 57-69.


Fainsod, A., Bogarad, L. D., Ruusala, T., Lubin, M., Crothers, D. M., and Ruddle, F. H. (1986). The homeo domain of a murine protein binds 5' to its own homeo box. Proc Natl Acad Sci U S A: 83, 9532-6.

Farnet, C. M., and Bushman, F. D. (1997). HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell: 88, 483-92.

Fisher, R. P., and Morgan, D. O. (1994). A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell: 78, 713-24.

Fong, Y. W., and Zhou, Q. (2001). Stimulatory effect of splicing factors on transcriptional elongation. Nature: 414, 929-33.

Francastel, C., Schubeler, D., Martin, D. I., and Groudine, M. (2000). Nuclear compartmentalization and gene activity. Nat Rev Mol Cell Biol: 1, 137-43.

Franke, E. K., Yuan, H. E., and Luban, J. (1994). Specific incorporation of cyclophilin A into HIV-1 virions. Nature: 372, 359-62.

Frankel, A. D., and Young, J. A. (1998). HIV-1: fifteen proteins and an RNA. Annu Rev Biochem: 67, 1-25.

Freedman, L. P., Luisi, B. F., Korszun, Z. R., Basavappa, R., Sigler, P. B., and Yamamoto, K. R. (1988). The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature: 334, 543-6.

Fryer, C. J., and Archer, T. K. (1998). Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature: 393, 88-91.

Fu, T. J., Peng, J., Lee, G., Price, D. H., and Flores, O. (1999). Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J Biol Chem: 274, 34527-30.


Gallo, R. C. (1999). Tat as one key to HIV-induced immune pathogenesis and Tat (correction of Pat) toxoid as an important component of a vaccine. Proc Natl Acad Sci U S A: 96, 8324-6.

Garber, M. E., Mayall, T. P., Suess, E. M., Meisenhelder, J., Thompson, N. E., and Jones, K. A. (2000). CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Mol Cell Biol: 20, 6958-69.

Garber, M. E., Wei, P., KewalRamani, V. N., Mayall, T. P., Herrmann, C. H., Rice, A. P., Littman, D. R., and Jones, K. A. (1998). The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev: 12, 3512-27.

Garcia, J. A., Harrich, D., Pearson, L., Mitsuyasu, R., and Gaynor, R. B. (1988). Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat. Embo J: 7, 3143-7.

Garcia-Martinez, L. F., Mavankal, G., Neveu, J. M., Lane, W. S., Ivanov, D., and Gaynor, R. B. (1997). Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. Embo J: 16, 2836-50.

Garriga, J., Mayol, X., and Grana, X. (1996). The CDC2-related kinase PITALRE is the catalytic subunit of active multimeric protein complexes. Biochem J: 319, 293-8.

Gaynor, R. (1992). Cellular transcription factors involved in the regulation of HIV-1 gene expression. Aids: 6, 347-63.

Geiger, J. H., Hahn, S., Lee, S., and Sigler, P. B. (1996). Crystal structure of the yeast TFIIA/TBP/DNA complex. Science: 272, 830-6.

Ghezzi, S., Noonan, D. M., Aluigi, M. G., Vallanti, G., Cota, M., Benelli, R., Morini, M., Reeves, J. D., Vicenzi, E., Poli, G., and Albini, A. (2000). Inhibition of CXCR4-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem Biophys Res Commun: 270, 992-6.

Giacca, M., Gutierrez, M. I., Menzo, S., d'Adda di Fagagna, F., and Falaschi, A. (1992). A human binding site for transcription factor USF/MLTF mimics the negative regulatory element of human immunodeficiency virus type 1. Virology: 186, 133-47.

Gold, M. O., Yang, X., Herrmann, C. H., and Rice, A. P. (1998). PITALRE, the catalytic subunit of TAK, is required for human immunodeficiency virus Tat transactivation in vivo. J Virol: 72, 4448-53.

Grana, X., De Luca, A., Sang, N., Fu, Y., Claudio, P. P., Rosenblatt, J., Morgan, D. O., and Giordano, A. (1994). PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci U S A: 91, 3834-8.

Gu, W., Malik, S., Ito, M., Yuan, C. X., Fondell, J. D., Zhang, X., Martinez, E., Qin, J., and Roeder, R. G. (1999). A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol Cell: 3, 97-108.

Gu, W., and Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell: 90, 595-606.


Hampsey, M., and Reinberg, D. (1999). RNA polymerase II as a control panel for multiple coactivator complexes. Curr Opin Genet Dev: 9, 132-9.

Harrich, D., Ulich, C., Garcia-Martinez, L. F., and Gaynor, R. B. (1997). Tat is required for efficient HIV-1 reverse transcription. Embo J: 16, 1224-35.

Hartzog, G. A., Wada, T., Handa, H., and Winston, F. (1998). Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev: 12, 357-69.

Hauber, J., Malim, M. H., and Cullen, B. R. (1989). Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol: 63, 1181-7.

Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature: 387, 296-9.

Herrera, J. E., Bergel, M., Yang, X. J., Nakatani, Y., and Bustin, M. (1997). The histone acetyltransferase activity of human GCN5 and PCAF is stabilized by coenzymes. J Biol Chem: 272, 27253-8.

Honda, R., Tanaka, H., and Yasuda, H. (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett: 420, 25-7.

Hope, T. J. (1997). Viral RNA export. Chem Biol: 4, 335-44.

Hottiger, M. O., and Nabel, G. J. (1998). Interaction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J Virol: 72, 8252-6.

Huang, L., Bosch, I., Hofmann, W., Sodroski, J., and Pardee, A. B. (1998). Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T- lymphotropic HIV-1 strains. J Virol: 72, 8952-60.

Huang, L. M., Joshi, A., Willey, R., Orenstein, J., and Jeang, K. T. (1994). Human immunodeficiency viruses regulated by alternative trans- activators: genetic evidence for a novel non-transcriptional function of Tat in virion infectivity. Embo J: 13, 2886-96.

Hung, H. L., Lau, J., Kim, A. Y., Weiss, M. J., and Blobel, G. A. (1999). CREB-Binding protein acetylates hematopoietic transcription factor GATA- 1 at functionally important sites. Mol Cell Biol: 19, 3496-505.


Ikura, T., Ogryzko, V. V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J., and Nakatani, Y. (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell: 102, 463-73.

Isel, C., and Karn, J. (1999). Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl- terminal domain hyperphosphorylation during transcriptional elongation. J Mol Biol: 290, 929-41.


Jeang, K. T., and Berkhout, B. (1992). Kinetics of HIV-1 long terminal repeat trans-activation. Use of intragenic ribozyme to assess rate-limiting steps. J Biol Chem: 267, 17891-9.

Jeang, K. T., Chun, R., Lin, N. H., Gatignol, A., Glabe, C. G., and Fan, H. (1993). In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J Virol: 67, 6224-33.

Jeang, K. T., Xiao, H., and Rich, E. A. (1999). Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem: 274, 28837-40.

Jiang, M., Mak, J., Ladha, A., Cohen, E., Klein, M., Rovinski, B., and Kleiman, L. (1993). Identification of tRNAs incorporated into wild-type and mutant human immunodeficiency virus type 1. J Virol: 67, 3246-53.

Jones, K. A. (1997). Taking a new TAK on tat transactivation. Genes Dev: 11, 2593-9.

Jones, K. A., Kadonaga, J. T., Luciw, P. A., and Tjian, R. (1986). Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science: 232, 755-9.

Jones, K. A., and Peterlin, B. M. (1994). Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem: 63, 717-43.

Jordan, A., Defechereux, P., and Verdin, E. (2001). The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. Embo J: 20, 1726-38.


Kadonaga, J. T., Carner, K. R., Masiarz, F. R., and Tjian, R. (1987). Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell: 51, 1079-90.

Kaiser, K., and Meisterernst, M. (1996). The human general co-factors. Trends Biochem Sci: 21, 342-5.

Kalpana, G. V., Marmon, S., Wang, W., Crabtree, G. R., and Goff, S. P. (1994). Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science: 266, 2002-6.

Kameoka, M., Morgan, M., Binette, M., Russell, R. S., Rong, L., Guo, X., Mouland, A., Kleiman, L., Liang, C., and Wainberg, M. A. (2002). The Tat protein of human immunodeficiency virus type 1 (HIV-1) can promote placement of tRNA primer onto viral RNA and suppress later DNA polymerization in HIV-1 reverse transcription. J Virol: 76, 3637-45.

Kameoka, M., Rong, L., Gotte, M., Liang, C., Russell, R. S., and Wainberg, M. A. (2001). Role for human immunodeficiency virus type 1 Tat protein in suppression of viral reverse transcriptase activity during late stages of viral replication. J Virol: 75, 2675-83.

Kashanchi, F., Piras, G., Radonovich, M. F., Duvall, J. F., Fattaey, A., Chiang, C. M., Roeder, R. G., and Brady, J. N. (1994). Direct interaction of human TFIID with the HIV-1 transactivator tat. Nature: 367, 295-9.

Katz, R. A., and Skalka, A. M. (1994). The retroviral enzymes. Annu Rev Biochem: 63, 133-73.

Keen, N. J., Churcher, M. J., and Karn, J. (1997). Transfer of Tat and release of TAR RNA during the activation of the human immunodeficiency virus type-1 transcription elongation complex. Embo J: 16, 5260-72.

Keen, N. J., Gait, M. J., and Karn, J. (1996). Human immunodeficiency virus type-1 Tat is an integral component of the activated transcription-elongation complex. Proc Natl Acad Sci U S A: 93, 2505-10.

Kiernan, R. E., Emiliani, S., Nakayama, K., Castro, A., Labbe, J. C., Lorca, T., Nakayama Ki, K., and Benkirane, M. (2001). Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome. Mol Cell Biol: 21, 7956-70.

Kiernan, R. E., Vanhulle, C., Schiltz, L., Adam, E., Xiao, H., Maudoux, F., Calomme, C., Burny, A., Nakatani, Y., Jeang, K. T., Benkirane, M., and Van Lint, C. (1999). HIV-1 tat transcriptional activity is regulated by acetylation. Embo J: 18, 6106-18.

Kim, T. K., Hashimoto, S., Kelleher, R. J., 3rd, Flanagan, P. M., Kornberg, R. D., Horikoshi, M., and Roeder, R. G. (1994). Effects of activation-defective TBP mutations on transcription initiation in yeast. Nature: 369, 252-5.

Kingston, R. E., and Narlikar, G. J. (1999). ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev: 13, 2339-52.

Knoepfler, P. S., and Eisenman, R. N. (1999). Sin meets NuRD and other tails of repression. Cell: 99, 447-50.

Kouzarides, T. (2000). Acetylation: a regulatory modification to rival phosphorylation? Embo J: 19, 1176-9.

Kowenz-Leutz, E., and Leutz, A. (1999). A C/EBP beta isoform recruits the SWI/SNF complex to activate myeloid genes. Mol Cell: 4, 735-43.

Kubbutat, M. H., Jones, S. N., and Vousden, K. H. (1997). Regulation of p53 stability by Mdm2. Nature: 387, 299-303.

Kugel, J. F., and Goodrich, J. A. (1998). Promoter escape limits the rate of RNA polymerase II transcription and is enhanced by TFIIE, TFIIH, and ATP on negatively supercoiled DNA. Proc Natl Acad Sci U S A: 95, 9232-7.

Kumar, A., Haque, J., Lacoste, J., Hiscott, J., and Williams, B. R. (1994). Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc Natl Acad Sci U S A: 91, 6288-92.

Kumar, K. P., Akoulitchev, S., and Reinberg, D. (1998). Promoter-proximal stalling results from the inability to recruit transcription factor IIH to the transcription complex and is a regulated event. Proc Natl Acad Sci U S A: 95, 9767-72.

Kuo, M. H., and Allis, C. D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays: 20, 615-26.


Lasky, L. A., Nakamura, G., Smith, D. H., Fennie, C., Shimasaki, C., Patzer, E., Berman, P., Gregory, T., and Capon, D. J. (1987). Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell: 50, 975-85.

Laughlin, M. A., Chang, G. Y., Oakes, J. W., Gonzalez-Scarano, F., and Pomerantz, R. J. (1995). Sodium butyrate stimulation of HIV-1 gene expression: a novel mechanism of induction independent of NF-kappa B. J Acquir Immune Defic Syndr Hum Retrovirol: 9, 332-9.

Lee, C. H., Murphy, M. R., Lee, J. S., and Chung, J. H. (1999). Targeting a SWI/SNF-related chromatin remodeling complex to the beta- globin promoter in erythroid cells. Proc Natl Acad Sci U S A: 96, 12311-5.

Lee, M. O., Hobbs, P. D., Zhang, X. K., Dawson, M. I., and Pfahl, M. (1994). A synthetic retinoid antagonist inhibits the human immunodeficiency virus type 1 promoter. Proc Natl Acad Sci U S A: 91, 5632-6.

Lee, T. I., and Young, R. A. (1998). Regulation of gene expression by TBP-associated proteins. Genes Dev: 12, 1398-408.

Legube, G., Linares, L. K., Lemercier, C., Scheffner, M., Khochbin, S., and Trouche, D. (2002). Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. Embo J: 21, 1704-12.

Lenfant, F., Mann, R. K., Thomsen, B., Ling, X., and Grunstein, M. (1996). All four core histone N-termini contain sequences required for the repression of basal transcription in yeast. Embo J: 15, 3974-85.

LeRoy, G., Orphanides, G., Lane, W. S., and Reinberg, D. (1998). Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science: 282, 1900-4.

L'Hernault, S. W., and Rosenbaum, J. L. (1985). Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry: 24, 473-8.

Li, C. J., Friedman, D. J., Wang, C., Metelev, V., and Pardee, A. B. (1995). Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science: 268, 429-31.

Li, Q., Imhof, A., Collingwood, T. N., Urnov, F. D., and Wolffe, A. P. (1999). p300 stimulates transcription instigated by ligand-bound thyroid hormone receptor at a step subsequent to chromatin disruption. Embo J: 18, 5634-52.

Liou, H. C., and Baltimore, D. (1993). Regulation of the NF-kappa B/rel transcription factor and I kappa B inhibitor system. Curr Opin Cell Biol: 5, 477-87.

Liu, J., Perkins, N. D., Schmid, R. M., and Nabel, G. J. (1992). Specific NF-kappa B subunits act in concert with Tat to stimulate human immunodeficiency virus type 1 transcription. J Virol: 66, 3883-7.

Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature: 389, 251-60.


Maldonado, E., and Reinberg, D. (1995). News on initiation and elongation of transcription by RNA polymerase II. Curr Opin Cell Biol: 7, 352-61.

Mancebo, H. S., Lee, G., Flygare, J., Tomassini, J., Luu, P., Zhu, Y., Peng, J., Blau, C., Hazuda, D., Price, D., and Flores, O. (1997). P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev: 11, 2633-44.

Marcello, A., Zoppe, M., and Giacca, M. (2001). Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator. IUBMB Life: 51, 175-81.

Marciniak, R. A., Calnan, B. J., Frankel, A. D., and Sharp, P. A. (1990). HIV-1 Tat protein trans-activates transcription in vitro. Cell: 63, 791-802.

Marshall, N. F., Peng, J., Xie, Z., and Price, D. H. (1996). Control of RNA polymerase II elongation potential by a novel carboxyl- terminal domain kinase. J Biol Chem: 271, 27176-83.

Marshall, N. F., and Price, D. H. (1992). Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol Cell Biol: 12, 2078-90.

Marshall, N. F., and Price, D. H. (1995). Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem: 270, 12335-8.

Martin, K., Trouche, D., Hagemeier, C., Sorensen, T. S., La Thangue, N. B., and Kouzarides, T. (1995). Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature: 375, 691-4.

Martinez-Balbas, M. A., Bauer, U. M., Nielsen, S. J., Brehm, A., and Kouzarides, T. (2000). Regulation of E2F1 activity by acetylation. Embo J: 19, 662-71.

Marx, J. (2002). Ubiquitin lives up to its name. Science: 297, 1792-1794.

Marzio, G., Tyagi, M., Gutierrez, M. I., and Giacca, M. (1998). HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci U S A: 95, 13519-24.

McMillan, N. A., Chun, R. F., Siderovski, D. P., Galabru, J., Toone, W. M., Samuel, C. E., Mak, T. W., Hovanessian, A. G., Jeang, K. T., and Williams, B. R. (1995). HIV-1 Tat directly interacts with the interferon-induced, double- stranded RNA-dependent kinase, PKR. Virology: 213, 413-24.

Meek, D. W. (1999). Mechanisms of switching on p53: a role for covalent modification? Oncogene: 18, 7666-75.

Miller, J., McLachlan, A. D., and Klug, A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. Embo J: 4, 1609-14.

Miller, M. D., and Bushman, F. D. (1995). HIV integration. Ini1 for integration? Curr Biol: 5, 368-70.

Miller, M. D., Farnet, C. M., and Bushman, F. D. (1997). Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol: 71, 5382-90.

Mitchell, P. J., and Tjian, R. (1989). Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science: 245, 371-8.

Mizzen, C. A., Yang, X. J., Kokubo, T., Brownell, J. E., Bannister, A. J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S. L., Kouzarides, T., Nakatani, Y., and Allis, C. D. (1996). The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell: 87, 1261-70.

Molinari, E., Gilman, M., and Natesan, S. (1999). Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. Embo J: 18, 6439-47.

Moore, J. P., Trkola, A., and Dragic, T. (1997). Co-receptors for HIV-1 entry. Curr Opin Immunol: 9, 551-62.

Mujtaba, S., He, Y., Zeng, L., Farooq, A., Carlson, J. E., Ott, M., Verdin, E., and Zhou, M. M. (2002). Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell: 9, 575-86.

Muller, H. P., and Varmus, H. E. (1994). DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. Embo J: 13, 4704-14.

Munshi, N., Agalioti, T., Lomvardas, S., Merika, M., Chen, G., and Thanos, D. (2001). Coordination of a transcriptional switch by HMGI(Y) acetylation. Science: 293, 1133-6.

Munshi, N., Merika, M., Yie, J., Senger, K., Chen, G., and Thanos, D. (1998). Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol Cell: 2, 457-67.

Myers, L. C., and Kornberg, R. D. (2000). Mediator of transcriptional regulation. Annu Rev Biochem: 69, 729-49.


Naar, A. M., Lemon, B. D., and Tjian, R. (2001). Transcriptional coactivator complexes. Annu Rev Biochem: 70, 475-501.

Nakatani, Y. (2002). HIV-1 Transcription. Activation Mediated by Acetylation of Tat. Structure (Camb): 10, 443-4.

Narlikar, G. J., Fan, H. Y., and Kingston, R. E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell: 108, 475-87.

Neish, A. S., Anderson, S. F., Schlegel, B. P., Wei, W., and Parvin, J. D. (1998). Factors associated with the mammalian RNA polymerase II holoenzyme. Nucleic Acids Res: 26, 847-53.

Nguyen, V. T., Kiss, T., Michels, A. A., and Bensaude, O. (2001). 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature: 414, 322-5.

Nikolov, D. B., Chen, H., Halay, E. D., Usheva, A. A., Hisatake, K., Lee, D. K., Roeder, R. G., and Burley, S. K. (1995). Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature: 377, 119-28.

Norman, C., Runswick, M., Pollock, R., and Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell: 55, 989-1003.

Novina, C. D., and Roy, A. L. (1996). Core promoters and transcriptional control. Trends Genet: 12, 351-5.


Oelgeschlager, T., Tao, Y., Kang, Y. K., and Roeder, R. G. (1998). Transcription activation via enhanced preinitiation complex assembly in a human cell-free system lacking TAFIIs. Mol Cell: 1, 925-31.

Ogryzko, V. V., Kotani, T., Zhang, X., Schiltz, R. L., Howard, T., Yang, X. J., Howard, B. H., Qin, J., and Nakatani, Y. (1998). Histone-like TAFs within the PCAF histone acetylase complex. Cell: 94, 35-44.

Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell: 87, 953-9.

Okamoto, H., Sheline, C. T., Corden, J. L., Jones, K. A., and Peterlin, B. M. (1996). Trans-activation by human immunodeficiency virus Tat protein requires the C-terminal domain of RNA polymerase II. Proc Natl Acad Sci U S A: 93, 11575-9.

Ott, D. E., Coren, L. V., Copeland, T. D., Kane, B. P., Johnson, D. G., Sowder, R. C., 2nd, Yoshinaka, Y., Oroszlan, S., Arthur, L. O., and Henderson, L. E. (1998). Ubiquitin is covalently attached to the p6Gag proteins of human immunodeficiency virus type 1 and simian immunodeficiency virus and to the p12Gag protein of Moloney murine leukemia virus. J Virol: 72, 2962-8.

Ott, D. E., Coren, L. V., Kane, B. P., Busch, L. K., Johnson, D. G., Sowder, R. C., 2nd, Chertova, E. N., Arthur, L. O., and Henderson, L. E. (1996). Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. J Virol: 70, 7734-43.

Ott, M., Emiliani, S., Van Lint, C., Herbein, G., Lovett, J., Chirmule, N., McCloskey, T., Pahwa, S., and Verdin, E. (1997). Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science: 275, 1481-5.

Ott, M., Lovett, J. L., Mueller, L., and Verdin, E. (1998). Superinduction of IL-8 in T cells by HIV-1 Tat protein is mediated through NF-kappaB factors. J Immunol: 160, 2872-80.

Ott, M., Schnolzer, M., Garnica, J., Fischle, W., Emiliani, S., Rackwitz, H. R., and Verdin, E. (1999). Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr Biol: 9, 1489-92.


Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T. (1994). The ubiquitin-proteasome pathway is required for processing the NF- kappa B1 precursor protein and the activation of NF-kappa B. Cell: 78, 773-85.

Parada, C. A., and Roeder, R. G. (1996). Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature: 384, 375-8.

Park, J. M., Werner, J., Kim, J. M., Lis, J. T., and Kim, Y. J. (2001). Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol Cell: 8, 9-19.

Pazin, M. J., Sheridan, P. L., Cannon, K., Cao, Z., Keck, J. G., Kadonaga, J. T., and Jones, K. A. (1996). NF-kappa B-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev: 10, 37-49.

Peng, J., Marshall, N. F., and Price, D. H. (1998). Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J Biol Chem: 273, 13855-60.

Peng, J., Zhu, Y., Milton, J. T., and Price, D. H. (1998). Identification of multiple cyclin subunits of human P-TEFb. Genes Dev: 12, 755-62.

Pereira, L. A., Bentley, K., Peeters, A., Churchill, M. J., and Deacon, N. J. (2000). A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res: 28, 663-8.

Peterson, C. L., and Workman, J. L. (2000). Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev: 10, 187-92.

Phelan, M. L., Sif, S., Narlikar, G. J., and Kingston, R. E. (1999). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell: 3, 247-53.

Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem: 70, 503-33.

Ping, Y. H., and Rana, T. M. (1999). Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. J Biol Chem: 274, 7399-404.

Price, D. H. (2000). P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol: 20, 2629-34.

Prives, C., and Manley, J. L. (2001). Why is p53 acetylated? Cell: 107, 815-8.

Pruss, D., Bushman, F. D., and Wolffe, A. P. (1994). Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci U S A: 91, 5913-7.


Rana, T. M., and Jeang, K. T. (1999). Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys: 365, 175-85.

Reeves, J. D., McKnight, A., Potempa, S., Simmons, G., Gray, P. W., Power, C. A., Wells, T., Weiss, R. A., and Talbot, S. J. (1997). CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology: 231, 130-4.

Remy, E., de Rocquigny, H., Petitjean, P., Muriaux, D., Theilleux, V., Paoletti, J., and Roques, B. P. (1998). The annealing of tRNA3Lys to human immunodeficiency virus type 1 primer binding site is critically dependent on the NCp7 zinc fingers structure. J Biol Chem: 273, 4819-22.

Rey, O., Canon, J., and Krogstad, P. (1996). HIV-1 Gag protein associates with F-actin present in microfilaments. Virology: 220, 530-4.

Rice, A. P., and Carlotti, F. (1990). Mutational analysis of the conserved cysteine-rich region of the human immunodeficiency virus type 1 Tat protein. J Virol: 64, 1864-8.

Richter, S., Ping, Y. H., and Rana, T. M. (2002). TAR RNA loop: A scaffold for the assembly of a regulatory switch in HIV replication. Proc Natl Acad Sci U S A: 99, 7928-33.

Roeder, R. G. (1996). The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci: 21, 327-35.

Rosen, C. A., Sodroski, J. G., and Haseltine, W. A. (1985). The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell: 41, 813-23.

Roth, S. Y., and Allis, C. D. (1996). Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell: 87, 5-8.

Roy, S., Delling, U., Chen, C. H., Rosen, C. A., and Sonenberg, N. (1990). A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat- mediated trans-activation. Genes Dev: 4, 1365-73.

Ruben, S., Perkins, A., Purcell, R., Joung, K., Sia, R., Burghoff, R., Haseltine, W. A., and Rosen, C. A. (1989). Structural and functional characterization of human immunodeficiency virus tat protein. J Virol: 63, 1-8.


Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C. W., and Appella, E. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev: 12, 2831-41.

Salghetti, S. E., Caudy, A. A., Chenoweth, J. G., and Tansey, W. P. (2001). Regulation of transcriptional activation domain function by ubiquitin. Science: 293, 1651-3.

Salghetti, S. E., Muratani, M., Wijnen, H., Futcher, B., and Tansey, W. P. (2000). Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proc Natl Acad Sci U S A: 97, 3118-23.

Schaeffer, L., Roy, R., Humbert, S., Moncollin, V., Vermeulen, W., Hoeijmakers, J. H., Chambon, P., and Egly, J. M. (1993). DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science: 260, 58-63.

Schroder, A., Shinn, P., Chen, H., Berry, C., Ecker, J., and Bushman, F. (2002). HIV-1 Integration in the Human Genome Favors Active Genes and Local Hotspots. Cell: 110, 521.

Secchiero, P., Zella, D., Capitani, S., Gallo, R. C., and Zauli, G. (1999). Extracellular HIV-1 tat protein up-regulates the expression of surface CXC-chemokine receptor 4 in resting CD4+ T cells. J Immunol: 162, 2427-31. frame.html.

Sehgal, P. B., Darnell, J. E., Jr., and Tamm, I. (1976). The inhibition by DRB (5,6-dichloro-1-beta-D- ribofuranosylbenzimidazole) of hnRNA and mRNA production in HeLa cells. Cell: 9, 473-80.

Sheridan, P. L., Mayall, T. P., Verdin, E., and Jones, K. A. (1997). Histone acetyltransferases regulate HIV-1 enhancer activity in vitro. Genes Dev: 11, 3327-40.

Sherman, M. P., and Greene, W. C. (2002). Slipping through the door: HIV entry into the nucleus. Microbes Infect: 4, 67-73.

Shiekhattar, R., Mermelstein, F., Fisher, R. P., Drapkin, R., Dynlacht, B., Wessling, H. C., Morgan, D. O., and Reinberg, D. (1995). Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature: 374, 283-7.

Siekevitz, M., Josephs, S. F., Dukovich, M., Peffer, N., Wong-Staal, F., and Greene, W. C. (1987). Activation of the HIV-1 LTR by T cell mitogens and the trans-activator protein of HTLV-I. Science: 238, 1575-8.

Smale, S. T., and Baltimore, D. (1989). The "initiator" as a transcription control element. Cell: 57, 103-13.

Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (1997). Steroid receptor coactivator-1 is a histone acetyltransferase. Nature: 389, 194-8.

Spencer, V. A., and Davie, J. R. (1999). Role of covalent modifications of histones in regulating gene expression. Gene: 240, 1-12.

Sterner, D. E., and Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev: 64, 435-59.

Sternglanz, R. (1996). Histone acetylation: a gateway to transcriptional activation. Trends Biochem Sci: 21, 357-8.

Stevens, S. W., and Griffith, J. D. (1996). Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration. J Virol: 70, 6459-62.

Strack, B., Calistri, A., and Gottlinger, H. G. (2002). Late assembly domain function can exhibit context dependence and involves ubiquitin residues implicated in endocytosis. J Virol: 76, 5472-9.

Struhl, K. (1996). Chromatin structure and RNA polymerase II connection: implications for transcription. Cell: 84, 179-82.

Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes Dev: 12, 599-606.

Sudarsanam, P., Iyer, V. R., Brown, P. O., and Winston, F. (2000). Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A: 97, 3364-9.

Sudarsanam, P., and Winston, F. (2000). The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet: 16, 345-51.

Sun, X., Zhang, Y., Cho, H., Rickert, P., Lees, E., Lane, W., and Reinberg, D. (1998). NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol Cell: 2, 213-22.

Sun, Z. W., and Allis, C. D. (2002). Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature: 418, 104-8.

Sune, C., and Garcia-Blanco, M. A. (1995). Sp1 transcription factor is required for in vitro basal and Tat- activated transcription from the human immunodeficiency virus type 1 long terminal repeat. J Virol: 69, 6572-6.

Svejstrup, J. Q., Vichi, P., and Egly, J. M. (1996). The multiple roles of transcription/repair factor TFIIH. Trends Biochem Sci: 21, 346-50.


Taatjes, D. J., Naar, A. M., Andel, F., 3rd, Nogales, E., and Tjian, R. (2002). Structure, function, and activator-induced conformations of the CRSP coactivator. Science: 295, 1058-62.

Tan, Q., Linask, K. L., Ebright, R. H., and Woychik, N. A. (2000). Activation mutants in yeast RNA polymerase II subunit RPB3 provide evidence for a structurally conserved surface required for activation in eukaryotes and bacteria. Genes Dev: 14, 339-48.

Tan, S., Hunziker, Y., Sargent, D. F., and Richmond, T. J. (1996). Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature: 381, 127-51.

Taube, R., Fujinaga, K., Wimmer, J., Barboric, M., and Peterlin, B. M. (1999). Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology: 264, 245-53.

Thali, M., Bukovsky, A., Kondo, E., Rosenwirth, B., Walsh, C. T., Sodroski, J., and Gottlinger, H. G. (1994). Functional association of cyclophilin A with HIV-1 virions. Nature: 372, 363-5.

Thomas, D., and Tyers, M. (2000). Transcriptional regulation: Kamikaze activators. Curr Biol: 10, R341-3.

Todone, F., Brick, P., Werner, F., Weinzierl, R. O., and Onesti, S. (2001). Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Mol Cell: 8, 1137-43.

Tomita, A., Towatari, M., Tsuzuki, S., Hayakawa, F., Kosugi, H., Tamai, K., Miyazaki, T., Kinoshita, T., and Saito, H. (2000). c-Myb acetylation at the carboxyl-terminal conserved domain by transcriptional co-activator p300. Oncogene: 19, 444-51.

Trieschmann, L., Martin, B., and Bustin, M. (1998). The chromatin unfolding domain of chromosomal protein HMG-14 targets the N-terminal tail of histone H3 in nucleosomes. Proc Natl Acad Sci U S A: 95, 5468-73.

Tyler, J. K., and Kadonaga, J. T. (1999). The "dark side" of chromatin remodeling: repressive effects on transcription. Cell: 99, 443-6.


Van Lint, C., Amella, C. A., Emiliani, S., John, M., Jie, T., and Verdin, E. (1997). Transcription factor binding sites downstream of the human immunodeficiency virus type 1 transcription start site are important for virus infectivity. J Virol: 71, 6113-27.

Van Lint, C., Emiliani, S., Ott, M., and Verdin, E. (1996). Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. Embo J: 15, 1112-20.

Vannier, D., Balderes, D., and Shore, D. (1996). Evidence that the transcriptional regulators SIN3 and RPD3, and a novel gene (SDS3) with similar functions, are involved in transcriptional silencing in S. cerevisiae. Genetics: 144, 1343-53.

Verdin, E. (1991). DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol: 65, 6790-9.

Verdin, E., Paras, P., Jr., and Van Lint, C. (1993). Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. Embo J: 12, 3249-59.

Vignali, M., Hassan, A. H., Neely, K. E., and Workman, J. L. (2000). ATP-dependent chromatin-remodeling complexes. Mol Cell Biol: 20, 1899-910.

Viscidi, R. P., Mayur, K., Lederman, H. M., and Frankel, A. D. (1989). Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science: 246, 1606-8.

Vlach, J., Garcia, A., Jacque, J. M., Rodriguez, M. S., Michelson, S., and Virelizier, J. L. (1995). Induction of Sp1 phosphorylation and NF-kappa B-independent HIV promoter domain activity in T lymphocytes stimulated by okadaic acid. Virology: 208, 753-61.


Wada, T., Takagi, T., Yamaguchi, Y., Ferdous, A., Imai, T., Hirose, S., Sugimoto, S., Yano, K., Hartzog, G. A., Winston, F., Buratowski, S., and Handa, H. (1998). DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev: 12, 343-56.

Wada, T., Takagi, T., Yamaguchi, Y., Watanabe, D., and Handa, H. (1998). Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. Embo J: 17, 7395-403.

Wade, P. A., Jones, P. L., Vermaak, D., and Wolffe, A. P. (1998). A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol: 8, 843-6.

Wade, P. A., Pruss, D., and Wolffe, A. P. (1997). Histone acetylation: chromatin in action. Trends Biochem Sci: 22, 128-32.

Wang, S., Huber, P. W., Cui, M., Czarnik, A. W., and Mei, H. Y. (1998). Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism. Biochemistry: 37, 5549-57.

Wang, W., Cote, J., Xue, Y., Zhou, S., Khavari, P. A., Biggar, S. R., Muchardt, C., Kalpana, G. V., Goff, S. P., Yaniv, M., Workman, J. L., and Crabtree, G. R. (1996). Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. Embo J: 15, 5370-82.

Wang, W., Xue, Y., Zhou, S., Kuo, A., Cairns, B. R., and Crabtree, G. R. (1996). Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev: 10, 2117-30.

Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H., and Jones, K. A. (1998). A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell: 92, 451-62.

Weil, P. A., Luse, D. S., Segall, J., and Roeder, R. G. (1979). Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Cell: 18, 469-84.

West, M. J., Lowe, A. D., and Karn, J. (2001). Activation of human immunodeficiency virus transcription in T cells revisited: NF-kappaB p65 stimulates transcriptional elongation. J Virol: 75, 8524-37.

Westendorp, M. O., Frank, R., Ochsenbauer, C., Stricker, K., Dhein, J., Walczak, H., Debatin, K. M., and Krammer, P. H. (1995). Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature: 375, 497-500.

Westendorp, M. O., Li-Weber, M., Frank, R. W., and Krammer, P. H. (1994). Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells. J Virol: 68, 4177-85.

Wild, C., Dubay, J. W., Greenwell, T., Baird, T., Jr., Oas, T. G., McDanal, C., Hunter, E., and Matthews, T. (1994). Propensity for a leucine zipper-like domain of human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus- induced fusion rather than assembly of the glycoprotein complex. Proc Natl Acad Sci U S A: 91, 12676-80.

Williams, T., Admon, A., Luscher, B., and Tjian, R. (1988). Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev: 2, 1557-69.

Wilson, C. J., Chao, D. M., Imbalzano, A. N., Schnitzler, G. R., Kingston, R. E., and Young, R. A. (1996). RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell: 84, 235-44.

Wimmer, J., Fujinaga, K., Taube, R., Cujec, T. P., Zhu, Y., Peng, J., Price, D. H., and Peterlin, B. M. (1999). Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b. Virology: 255, 182-9.

Woychik, N. A., and Hampsey, M. (2002). The RNA polymerase II machinery: structure illuminates function. Cell: 108, 453-63.

Wu, L., Gerard, N. P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A. A., Desjardin, E., Newman, W., Gerard, C., and Sodroski, J. (1996). CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature: 384, 179-83.

Wu-Baer, F., Lane, W. S., and Gaynor, R. B. (1998). Role of the human homolog of the yeast transcription factor SPT5 in HIV- 1 Tat-activation. J Mol Biol: 277, 179-97.


Xiao, H., Lis, J. T., and Jeang, K. T. (1997). Promoter activity of Tat at steps subsequent to TATA-binding protein recruitment. Mol Cell Biol: 17, 6898-905.

Xiao, H., Neuveut, C., Tiffany, H. L., Benkirane, M., Rich, E. A., Murphy, P. M., and Jeang, K. T. (2000). Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci U S A: 97, 11466-71.


Yamaguchi, Y., Inukai, N., Narita, T., Wada, T., and Handa, H. (2002). Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol Cell Biol: 22, 2918-27.

Yamaguchi, Y., Takagi, T., Wada, T., Yano, K., Furuya, A., Sugimoto, S., Hasegawa, J., and Handa, H. (1999). NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell: 97, 41-51.

Yamaguchi, Y., Wada, T., Watanabe, D., Takagi, T., Hasegawa, J., and Handa, H. (1999). Structure and function of the human transcription elongation factor DSIF. J Biol Chem: 274, 8085-92.

Yang, X., Herrmann, C. H., and Rice, A. P. (1996). The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function. J Virol: 70, 4576-84.

Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H., and Nakatani, Y. (1996). A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature: 382, 319-24.

Yang, Z., Zhu, Q., Luo, K., and Zhou, Q. (2001). The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature: 414, 317-22.

Yung, E., Sorin, M., Pal, A., Craig, E., Morozov, A., Delattre, O., Kappes, J., Ott, D., and Kalpana, G. V. (2001). Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1. Nat Med: 7, 920-6.


Zagury, D., Lachgar, A., Chams, V., Fall, L. S., Bernard, J., Zagury, J. F., Bizzini, B., Gringeri, A., Santagostino, E., Rappaport, J., Feldman, M., Burny, A., and Gallo, R. C. (1998). Interferon alpha and Tat involvement in the immunosuppression of uninfected T cells and C-C chemokine decline in AIDS. Proc Natl Acad Sci U S A: 95, 3851-6.

Zawel, L., Kumar, K. P., and Reinberg, D. (1995). Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev: 9, 1479-90.

Zawel, L., and Reinberg, D. (1995). Common themes in assembly and function of eukaryotic transcription complexes. Annu Rev Biochem: 64, 533-61.

Zawel, L., and Reinberg, D. (1993). Initiation of transcription by RNA polymerase II: a multi-step process. Prog Nucleic Acid Res Mol Biol: 44, 67-108.

Zeng, L., and Zhou, M. M. (2002). Bromodomain: an acetyl-lysine binding domain. FEBS Lett: 513, 124-8.

Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., and Charneau, P. (2000). HIV-1 genome nuclear import is mediated by a central DNA flap. Cell: 101, 173-85.

Zhou, M., Nekhai, S., Bharucha, D. C., Kumar, A., Ge, H., Price, D. H., Egly, J. M., and Brady, J. N. (2001). TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription. J Biol Chem: 276, 44633-40.

Zhu, Y., Pe'ery, T., Peng, J., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997). Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev: 11, 2622-32.

Cette bibliographie est issue de la THESE de Doctorat de Vanessa Bres, 25 Novembre 2002, Université Montpellier II
"Etude des modifications post-traductionnelles de la protéine TAT du virus de l'immunodéficience humaine de type-1 : rôle dans la régulation de son activité transcriptionnelle"
Directeur de Thèse : Monsef Benkirane, IGH, UPR CNRS 1142
© Copyright Université Montpellier II 2002

Created: 06/01/2003
Last updated: 29/06/2011
Author: Vanessa Bres
Editors: Chantal Ginestoux and Marie-Paule Lefranc

Software material and data coming from IMGT server may be used for academic research only, provided that it is referred to IMGT®, and cited as "IMGT®, the international ImMunoGeneTics information system® (founder and director: Marie-Paule Lefranc, Montpellier, France)." References to cite: Lefranc, M.-P. et al., Nucleic Acids Res., 27:209-212 (1999); doi: 10.1093/nar/27.1.209 Full text Cover; Ruiz, M. et al., Nucleic Acids Res., 28:219-221 (2000); doi: 10.1093/nar/28.1.219 Full text; Lefranc, M.-P., Nucleic Acids Res., 29:207-209 (2001); doi: 10.1093/nar/29.1.207 Full text; Lefranc, M.-P., Nucleic Acids Res., 31:307-310 (2003); doi: 10.1093/nar/gkg085 Full text; Lefranc, M.-P. et al., In Silico Biol., 5, 0006 (2004) [Epub], 5:45-60 (2005); Lefranc, M.-P. et al., Nucleic Acids Res., 33:D593-597 (2005); doi: 10.1093/nar/gki065 Full text; Lefranc, M.-P. et al., Nucleic Acids Res., 37:D1006-1012 (2009); doi: 10.1093/nar/gkn838 Full text; Lefranc, M.-P. et al., Nucleic Acids Res., 43:D413-422 (2015); doi: 10.1093/nar/gku1056 Full text.
For any other use please contact Marie-Paule Lefranc

CNRS Université de Montpellier European Commission
IMGT® Founder and Executive Director Emeritus:
Marie-Paule Lefranc
IMGT® Director:
Sofia Kossida
Bioinformatics manager:
Véronique Giudicelli
Computer manager:
Patrice Duroux
Amélie Houles

Citing IMGT | Warranty disclaimer and copyright notice | Privacy policy and advertisement policy

© Copyright 1995-2019 IMGT®, the international ImMunoGeneTics information system®