Here you are: IMGT Web resources > IMGT Education > Tutorials > Immunoglobulines et lymphocytes B

Amino acid positions involved in ADCC, ADCP, CDC, half-life and half-IG exchange




Structural and biological properties of human immunoglobulins

Human immunoglobulin (IG) chain characteristics

IG interchain disulfide bridges per monomer


Amino acids in the IGHG constant regions of the IG heavy chains are frequently engineered to modify the effector properties of the therapeutic monoclonal antibodies.
Amino acids changes at positions involved in antibody-dependent cellular (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), half-life, half-IG exchange, coengagement of antigen and FcγR on the same cell and knobs-into-holes reported in the literature are described in the tables below with the IMGT engineered variant nomenclature.



IMGT engineered variant nomenclature has been set up for an easier comparaison between engineered antibodies. IMGT engineered variants are classified by comparaison with the allele *01 of the gene and, if the effects are independent on the alleles, as a references for the description of the amino acid (AA) changes for the other alleles. In those cases, the same variant (v) number is therefore used for any allele of the same gene in the same species.
If consequences of the AA changes are different depending on alleles, the allele (identified by an asterisk followed by a number, for example *01) is included in the IMGT engineered variant nomenclature, for example IGHG1*01 instead of IGHG1.
Headers of the tables include:
IMGT gene name: based on the IMGT-ONTOLOGY CLASSIFICATION axiom.
IMGT IGHG CH domain: based on the IMGT-ONTOLOGY DESCRIPTION axiom.
IMGT amino acid (AA) changes on IGHG CH domain: described using the IMGT unique numbering for C-DOMAIN, a major concept of the IMGT-ONTOLOGY NUMEROTATION axiom.

Effects on binding, Effects on half-life, Effects on half-IG exchange, Modification of effector properties: data from the literature (references quoted).
IMGT description of AA changes on IGHG and correspondence with Eu numbering: correspondence between the IMGT description of AA changes on IGHG and the Eu numbering (between parentheses).


Antibody-dependent cellular cytotoxicity (ADCC)

ADCC reduction

Species IMGT gene name IMGT IGHG CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on binding Modification of effector properties IMGT notes IMGT description of AA changes on IGHG and correspondence with Eu numbering
Homo sapiens IGHG1 CH2 E1.4>P Homsap IGHG1v1 CH2 P1.4 Prevents FcγRI binding [1] Amino acid change (Homsap IGHG2-like). CH2 Glu E1.4>Pro P (233)
L1.3>V Homsap IGHG1v2 CH2 V1.3 Decreases FcγRI binding [1] LLGG (Homsap IGHG1)>VLGG. CH2 Leu L1.3>Val V (234)
L1.2>A Homsap IGHG1v3 CH2 A1.2 Prevents FcγRI binding [1] LLGG (Homsap IGHG1)>LAGG. CH2 Leu L1.2>Ala A (235)
P114>A Homsap IGHG1v4 CH2 A114 Reduces ADCC [2] CH2 Pro P114 (329) is conserved in the four Homsap IGHG. CH2 Pro P114>Ala A (329)
K109>W Homsap IGHG1v5 CH2 W109 Reduces ADCC [6] CH2 Lys 109>Trp W (326)

ADCC enhancement

Species IMGT gene name IMGT IGHG CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on binding Modification of effector properties IMGT notes IMGT description of AA changes on IGHG and correspondence with Eu numbering
Homo sapiens IGHG1 CH2 S85.4>A / E118>A / K119>A Homsap IGHG1v6 CH2 A85.4, A118, A119 Increases FcγRIIIa binding [3] Enhances ADCC [3] CH2 Ser S85.4>Ala A (298)/Glu E118>Ala A (333)/Lys K119>Ala A (334)
S3>D / l117>E Homsap IGHG1v7 CH2 D3, E117 Increases FcγRIIIa binding [4] Enhances ADCC [4] CH2 Ser S3>Asp D (239)/lle l117>Glu E (332)
S3>D / A115>L / I117>E Homsap IGHG1v8 CH2 D3, L115, E117 Increases FcRIIIa binding [4]
Decreases FcRIIb binding [4]
Enhances ADCC [4] CH2 Ser S3>Asp D (239)/Ala A115>Leu L (330)/IIe I117>Glu E (332)
CH2 and CH3 CH2 F7>L / R83>P / Y85.2>L / V88>I / CH3 P83>L Homsap IGHG1v9 CH2 L7, P83, L85.2, I88; CH3 L83 Enhances ADCC (100% increase) [14] CH2 Phe F7>Leu L (243)/Arg R83>Pro P (292)/Tyr Y85.2>Leu L (300)/Val V88>IIe I (305)/CH3 Pro P83>Leu L (396)
CH2 L1.3>Y / L1.2>Q / G1.1>W / S3>M / H30>D / D34>E / S85.4>A Homsap IGHG1v10 CH2 Y1.3, Q1.2, W1.1, M3, D30, E34, A85.4 Increases FcγIIIa binding (F158 by >2000-fold, V158 by >1000-fold) (association of H chain 1 (IGHG1*01v10) and H chain 2 (IGHG1*01v11)) [15] Enhances ADCC [15] CH2 Leu L1.3>Tyr Y (234)/Leu L1.2>Gln Q (235)/Gly G1.1>Trp W (236)/Ser S3>Met M (239)/His H30>Asp D (268)/Asp D34>Glu E (270)/Ser S85.4>Ala A (298)
D34>E / K109>D / A115>M / K119>E Homsap IGHG1v11 CH2 E34, D109, M115, E119 CH2 Asp D34>Glu E (270)/Lys K109>Asp D (326)/Ala A115>Met M (330)/Lys K119>Glu E (334)
G1.1>A / S3>D / A115>L / I117>E Homsap IGHG1v12 CH2 A1.1, D3, L115, E117 Increases FcγRIIIa affinity [5] CH2 Gly G1.1>Ala A(236)/Ser S3>D(239) Ala A115>Leu L(330)/Ile I117>E(332) 5d6d FCGR3A: Fc complex
IGHG2 CH2 VAG->LLGG (1.3 / 1.2 / 1.1 / 1) Homsap IGHG2v1 CH2 L1.3, L1.2, G1.1, G1 Confers FcγRI binding (WT does not show any binding capacity) [1] VAG- > LLGG (Homsap IGHG1-like)
IGHG4 CH2 F1.3>L Homsap IGHG4v1 CH2 L1.3 Increases FcγRI affinity [1] FLGG > LLGG (Homsap IGHG1-like)
Mus musculus IGHG2B CH2 E1.2>L Musmus IGHG2Bv1 CH2 L1.2 Increases FcγRI affinity [5] LEGG > LLGG (Homsap IGHG1-like)

Antibody-dependent cellular phagocytosis (ADCP)

Species IMGT gene name IMGT IGHG CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on binding Modification of effector properties IMGT description of AA changes on IGHG and correspondence with Eu numbering
Homo sapiens IGHG1 CH2 G1.1>A / S3>D / I117>E Homsap IGHG1v13 CH2 A1.1, D3, E117 Increases FcγRIIa binding [16]
Increases FcγRIIa/FcγRIIb binding ratio [16]
Enhances ADCP (phagocytosis of antibody-coated target cells by macrophages) [16] CH2 Gly G1.1>Ala A (236)/Ser S3>Asp D (239)/IIe I117>Glu E (332)
Variants with G1.1>A have a 70>fold greater FcγRIIa affinity and 15-fold improvement in FcγRIIa/FcγRIIb ratio [16]

Complement-dependent cytotoxicity (CDC)

CDC enhancement

Species IMGT gene name IMGT IGHG CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on binding Modification of effector properties IMGT description of AA changes on IGHG and correspondence with Eu numbering
Homo sapiens IGHG1 CH2 K109>W Homsap IGHG1v5 CH2 W109 Increases C1q binding [6] Enhances CDC [6] CH2 Lys K109>Trp W(326)
E118>S Homsap IGHG1v15 CH2 S118 Increases C1q binding [6] Enhances CDC [6] CH2 Glu E118>Ser S(333)
K109>W / E118>S Homsap IGHG1v16 CH2 W109, S118 Increases C1q binding [6] Enhances CDC [6] CH2 Lys K109>Trp W (326)/Glu E118>Ser S (333)
IgG1-G3 chimere (IGHG1 CH1, hinge IGHG3 CH2, CH3) Increases C1q binding [17] Enhances CDC [17] CH2 Lys K38>Gln Q(274)/Asn N40>Lys K(276)/Tyr Y85.2>Phe F(300)(1)
S29>E / H30>F / S107>T Homsap IGHG1v17 CH2 E29, F30, T107 Increases C1q binding [18] Enhances CDC [18] CH2 Ser S29>Glu E (267)/His H30>Phe F (268)/Ser S107>Thr T (324)
CH3 CH3 E1>R / E109>G / S120>Y favors IgG1 hexamerization Homsap IGHG1v18 CH3 R1, G109, Y120 Increases C1q binding [19] Enhances CDC [19] CH3 Glu E1>Arg R (345)/Glu E109>Gly G (430)/Ser S120>Tyr Y (440)
(the triple mutant IgG1-005-RGY (with IGHG1v18) form IgG1 hexamers) [19]
IGHG4 CH2 S116>P Homsap IGHG4*G1v2 CH2 P116 Enhances CDC [8]

CDC reduction

Species IMGT gene name IMGT IGHG CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on binding Modification of effector properties IMGT description of AA changes on IGHG and correspondence with Eu numbering
Homo sapiens IGHG1 CH2 D34>A Homsap IGHG1v19 CH2 A34 Reduces C1q binding [2] Reduces CDC [2] CH2 Asp D34>Ala A (270)
K105>A Homsap IGHG1v20 CH2 A105 Reduces C1q binding [2] Reduces CDC [2] CH2 Lys K105>Ala A (322)
P114>A Homsap IGHG1v4 CH2 A114 Reduces C1q binding [2] Reduces CDC [2] CH2 Pro P114>Ala A (329)
S3>D / A115>L / I117>E Homsap IGHG1v8 CH2 D3, L115, E117 Ablates CDC [4] CH2 Ser S3>Asp D (239)/Ala A115>L (330)/ Ile I117>Glu E (332)
Mus musculus IGHG2B CH2 E101>A Musmus IGHG2Bv2 CH2 A101 Reduces C1q binding [7] Reduces CDC [7]
K103>A Musmus IGHG2Bv3 CH2 A103 Reduces C1q binding [7] Reduces CDC [7]
K105>A Musmus IGHG2Bv4 CH2 A105 Reduces C1q binding [7] Reduces CDC [7]

Reduced CDC and ADCC

Species IMGT gene name IMGT IGHG CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on binding Modification of effector properties IMGT notes IMGT description of AA changes on IGHG and correspondence with Eu numbering
Homo sapiens IGHG1 CH2 L1.2>E Homsap IGHG1v23 CH2 E1.2 Reduces C1q binding [20]
Reduces FcγR binding [20]
Reduces CDC [20]
Reduces FcγR effector properties [20]
CH2 Leu L1.2>Glu E (235)
L1.3>A / L1.2>A Homsap IGHG1v14 CH2 A1.3, A1.2 Reduces C1q binding [21]
Reduces FcγR binding [21]
Reduces CDC [21]
Reduces FcγR effector properties [21]
CH2 Leu L1.3>Ala A (234)/Leu L1.2>Ala A (235)
IgG2-G4 chimere eculizumab Reduces C1q binding [22]
Reduces FcγR binding [22]
Reduces CDC [22]
Reduces FcγR effector properties [22]
IGHG2 CH2 H30>Q / V92>L / A115>S / P116>S Homsap IGHG2v2 CH2 Q30, L92, S115, S116 Reduces C1q binding [23]
Reduces FcγR binding [23]
Reduces CDC [23]
Reduces FcγR effector properties [23]
IgG2m4 (IGHG2v2) is based on the G2 isotype with AA changes from G4 [23] CH2 His H30>Gln Q (268)/Val V92>Leu L (309)/Ala A115>Ser S (330)/Pro P116>Ser S (331)
V1.3>A / G1>A / P2>S / H30>A / V92>L / A115>S / P116>S Homsap IGHG2v3 CH2 A1.3, A1, S2, A30, L92, S115, S116 Reduces C1q binding [24]
Reduces FcγR binding [24]
Reduces CDC [24]
Reduces FcγR effector properties [24] Undetectable ADCC, CDC, ADCP [24]
L92, S115 and S116, three AA changes are from G4 [24] CH2 Val V1.3>Ala A (234)/Gly G1>Ala A (237)/Pro P2>Ser S (238)/His H30>Ala A (268)/Val V92>Leu L (309)/Ala A115>Ser S (330)/Pro P116>Ser S (331)
IGHG4 CH2 L1.2>E Homsap IGHG4v3 CH2 E1.2 Reduces C1q binding [20]
Reduces FcγR binding [20]
Reduces CDC [20]
Reduces FcγR effector properties [20]
CH2 Leu L1.2>Glu E(235)
F1.3>A / L1.2>A Homsap IGHG4v4 CH2 A1.3, A1.2 Reduces C1q binding [21]
Reduces FcγR binding [21]
Reduces CDC [21]
Reduces FcγR effector properties [21]
CH2 Phe F1.3>Ala A (234)/Leu L1.2>Ala A (235)

Half life

Species IMGT gene name IMGT IGHG CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on half-life IMGT notes IMGT description of AA changes on IGHG and correspondence with Eu numbering
Homo sapiens IGHG1 CH2 M15.1>Y/S16>T/T18>E IGHG1v21 CH2 Y15.1, E18 Increases FCGRT (FcRn) binding [49] 10-fold increase at pH 6.0 [49], 4-fold increases half-life in a cynomolgus pK study [50] CH2 Met M15.1>Tyr Y(252), Ser S 16>T(254), Thr T18>E(256)
CH2-CH3 M15.1>Y / S16>T / T18>E (CH2)
+ H113>K / N114>F (CH3)
IGHV1*01v22 CH2 Y15.1, T16, E18, CH3 K113, F114 Increases FCGRT (FcRn) binding [9] CH2 Met M15.1>Tyr Y(252), Ser S 16>T(254), Thr T18>E(256), CH3 His H113>K(433), Asn N114>F(434)
CH2 H93> any AA (excluding C) Undetectable binding to FCGRT (FcRn) at pH 6.0 [48] CH2 His H93 any AA (excluding C) (310)>
CH3 M107>L / N114>S IGHG1v24 CH3 L107, S114 Increases FCGRT (FcRn) binding [51] (11-fold increase in affinity at pH 6.0 [51])
Increases reduction in tumor burden in human FCGRT (FcRn) transgenic tumor-bearing mice treated with an anti-EGFR or an anti-VEGF antibody [51]
From 3D structure it is postulated that N114>S allows additional hydrogen bonds with FCGRT (FcRn) [48] CH3 Met M107>Leu L(428)/Asn N114>Ser S(434)
IGHG2 CH2 T14>Q IGHG2v4 CH2 Q14 Increases FCGRT (FcRn) binding [10]
CH3 M107>L IGHG2v5 CH3 L107 Increases FCGRT (FcRn) binding [10]
IGHG3 CH3 R115>H IGHG3v1 CH3 H115 Extended half life [11]
IGHG4 CH2 M15.1>Y/S16>T/T18>E IGHG4v21 CH2 Y15.1, E18 Increases FCGRT (FcRn) binding [49] CH2 Met M15.1>Tyr Y(252), Ser S 16>T(254), Thr T18>E(256)

Half-IG exchange

Species IMGT gene name IMGT IGHG hinge or CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on half-IG exchange IMGT Notes
Homo sapiens IGHG4 hinge S10>P Homsap IGHG4v5 h10 P Reduces half-IG exchange [12] PSCP > PPCP (IGHG1-like)
CH3 R88>K Homsap IGHG4v6 CH3 K88 Reduces half-IG exchange [13] FFLYSRLT > FFLYSKLT (IGHG1-like)

Coengagement of antigen and FcγR on same cell

Species IMGT gene name IMGT IGHG CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on binding Modification of effector properties IMGT Notes IMGT description of AA changes on IGHG and correspondence with Eu numbering
Homo sapiens IGHG1 CH2 S29>E / L113>F Homsap IGHG1v25 CH2 E29, F113 Increases FcγRIIb binding (400-fold) [43] Inhibits by downstream ITIM signaling in B cells [44] XmAb5871 Ser S29>Glu E(267)/Leu L113>Phe F(328)

Knobs-into-holes

Species IMGT gene name IMGT IGHG CH domain IMGT amino acid changes on IGHG CH domain IMGT engineered variant nomenclature Effects on molecular interaction IMGT Notes IMGT description of AA changes on IGHG and correspondence with Eu numbering
Homo sapiens IGHG1 CH3 T22>Y / Y86>T Homsap IGHG1v26 CH3 Y22, T86 Increase interactions between the CH3 of the two different gamma1 chains [28] The T22>Y change creates the knob, while the Y86>T change, in the partner CH3 domain, creates the hole. CH3 Tyr T22>Trp Y(366)/Trp Y86>Tyr T(407)

More information:
IMGT references:
  1. [1] Chappel M.S. et al., Proc Natl Acad Sci U S A, 88(20):9036-9040 (1991). PMID: 1833770
  2. [2] Idusogie E.E. et al., J Immunol., 164(8):4178-4184 (2000). PMID: 10754313
  3. [3] Shields R.L. et al., J Biol Chem., 276(9):6591-6604 (2001). PMID: 11096108
  4. [4] Lazar G.A. et al., Proc Natl Acad Sci U S A., 103(11):4005-4010 (2006). PMID: 16537476
  5. [5] Duncan A.R. et al., Nature, 332(6164):563-564 (1988). PMID: 2965792
  6. [6] Idusogie E.E. et al., J Immunol., 166(4):2571-2575 (2001). PMID: 11160318
  7. [7] Duncan A.R. and Winter G., Nature, 332(6166):738-740 (1988). PMID: 3258649
  8. [8] Tao M.H. et al., J Exp Med., 178(2):661-667 (1993). PMID: 8340761
  9. [9] Vaccaro C. et al., Nat Biotechnol., 23(10):1283-1288 (2005). PMID: 16186811
  10. [10] Hinton P.R. et al., J Biol Chem., 279(8):6213-6216 (2004). PMID: 14699147
  11. [11] Stapleton N.M. et al., Nat Commun., 2:599 (2011). PMID: 22186895
  12. [12] Labrijn A.F. et al., Nat Biotechnol., 27(8):767-771 (2009). PMID: 19620983
  13. [13] Labrijn A.F. et al., J. Immunol., 187(6):3238-3246 (2011). PMID: 21841137
  14. [14] Stavenhagen J.B. et al., Cancer Res, 67:8882-8890 (2007). PMID: 17875730
  15. [15] Mimoto F. et al., Mabs, 5: 229-236 (2013). PMID: 23406628
  16. [16] Richards J.O., Mol Cancer Ther, 7(8):2517-2527 (2008). PMID: 18723496
  17. [17] Natsume A. et al., Cancer Res, 68:3863-3872 (2008). PMID: 18483271
  18. [18] Moore G.L. et al., Mabs, 2:181-189 (2010). PMID: 20150767
  19. [19] Diebolder C.A. et al., Science, 343:1260-1263 (2014). PMID: 24626930
  20. [20] Alegre M.L. et al., J. Immunol, 148:3461-3468 (1992). PMID: 1534096
  21. [21] Xu D. et al., Cell Immunol., 200:16-26 (2000). PMID: 10716879
  22. [22] Rother R.P. et al., Nat Biotechnol., 25:1256-1264 (2007). PMID: 17989688
  23. [23] An Z. et al., MAbs, 1:572-579 (2009). PMID: 20073128
  24. [24] Vafa O. et al., Methods, 65:114-126 (2014). PMID: 23872058
  25. [25] Thommesen J.E. et al., Mol Immunol., 37(16):995-1004 (2000). PMID: 11395138
  26. [26] Burton D.R., Structure and function of antibodies, In: Molecular genetics of immunoglobulin, pp. 1-50 (1987).
  27. [27] Canfield S.M. and Morrison S.L., J. Exp. Med., 1;173(6):1483-91 (1991). PMID: 1827828
  28. [28] Ridgway J.B., Presta L.G. and Carter P., Prot. Eng., 9(7):617-21 (1996). PMID: 8844834
Created:
11/12/2012
Last updated:
19/10/2018
Authors:
Mélissa Cambon, Souphatta Sasorith and Marie-Paule Lefranc
Editor:
Chantal Ginestoux and Mélissa Cambon