Statistical analysis of somatic mutations in immunoglobulin variable region from IMGT/HighV-QUEST output

Safa Aouinti, Véronique Giudicelli, Patrice Duroux, Sofia Kossida, Marie-Paule Lefranc

IMGT[®], the international ImMunoGeneTics information system[®], Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR 9002, CNRS, Montpellier University, Montpellier (France)

Biological context

The adaptive immune response is our ability to produce up to 2.10¹² different immunoglobulins (IG) or antibodies and T cell receptors (TR) per individual to fight pathogens. IMGT[®], the international ImMunoGeneTics information system[®], was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of these antigen receptors [1-2], and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics [2].

IMGT/HighV-QUEST for NGS analysis

IMGT/HighV-QUEST [3-6], the first web portal for next generation sequencing (NGS) analysis of IG and TR, provides the identification of the variable (V), diversity (D) and joining (J) genes and alleles, analysis of the V-(D)-J junction and characterization of the 'IMGT clonotype (AA)' (AA for amino acid).

Sequence nb	e V-GENE and allele ↓	V-REGION	V-REGION mutations
31	Homsap IGHV3-30-3*01 F	97.56	g6>c, V2; V2 gtg 4-6>V gtc c7>a,Q3>T(); Q3 caç
34	Homsap IGHV4-61*02 F	96.56	a2>c,Q1>P(); Q1 cag 1-3>P ccc g3>c,Q1>P(
64	Homsap IGHV3-21*01 F	99.65	g1>c,E1>Q(+ + -); E1 gag 1-3>Q cag

Muno

Gene

Information

system®

http://www.imgt.org

1- V-Domain combinatorial diversity

2- V-Domain junctional diversity

• V-D-J and V-J rearrangements in bone marrow.

Enzymes: exonuclease (deletion of nucleotides (nt)). TdT (addition of nt) \rightarrow N-REGION (N1, N2). It describes the V-REGION mutations and determines the hotspot positions in the closest germline V gene.

Statistical procedure

Data

- 43,558 reads of plasmacytes B cells isolated from a healthy female subject
- NGS technology: Roche GLF-LX 454
- NCBI Sequence Read Archive accession code: SRR1168790

Study purpose

- Development of an algorithm for statistical analysis of somatic mutations from IMGT/HighV-QUEST output.
- Development of a user-friendly tool for users.

R and S analysis

- Calculation of observed and expected number of AA changes (R) based on germline.
- Application of binomial [8] and multinomial [9] models to test significance between observed and expected R in FR-IMGT and CDR-IMGT under the null hypothesis of no selection H₀: the difference between the observed and expected number of R is due to chance only.

Binomial ~ multinomial distribution model [10]:

Binomial test	Multinomial test		
To calculate p-value of producing exactly the number of observed R.	To calculate p-value of producing either the observed number of R or more extreme values.		
Tests both for an excess or scarcity in R for CDR-IMGT and FR-IMGT.	Specify the direction of selection when calculating the p-value: - positive selection for CDR-IMGT - negative selection for FR-IMGT		

'IMGTStatMutation' R package

Replacement (R) and Silence (S) occurrences

3- V-Domain mutational diversity

• Somatic mutations in B cells of lymph nodes and spleen. Enzyme: AICDA (activation induced cytidine deaminase).

Standardized description

2 types of nucleotide mutations can be distinguished: transition (i) and transversion (e, v)

At the codon level, the consequence of the nucleotide mutation can be:

	Silence	(S): no AA change
--	---------	-------------------

Replacement (R): AA change

Example: . Q H P D Vcag cat cca gat gttctc aat ctg gct gtg L N L A V .

Expected R (AA change) and S (no AA change):

'IMGTStatMutation' is an R package for statistical analysis of somatic mutations in IG V-REGION from IMGT/HighV-QUEST output.

It includes a procedure to visualize mutations, calculate and detect significant differences between observed and expected number of AA changes (R) in FR-IMGT and CDR-IMGT. 'IMGTStatMutation' incorporates a userfriendly web interface, allowing use of the IMGT/StatMutation tool, in users' own browser.

IMGT/StatMutation web tool

IMGT/StatMutation is an IMGT[®] [1] tool for statistical analysis of somatic mutations from IMGT/HighV-QUEST output [3-6]. IMGT/StatMutation uses a statistical procedure for detecting significant differences in observed and expected number of AA changes (R) in FR-IMGT and CDR-IMGT. It uses the IMGT gene and allele nomenclature based on IMGT-ONTOLOGY [7] and IMGT standards in immunoinformatics [2]. IMGT/StatMutation is a user-friendly web interface in users' own browser.

IMGT/StatMutation web interface

WELCOME! to <u>IMGT/StatMutation</u>

THE INTERNATIONAL IMMUNOGENETICS INFORMATION SYSTEM®

R and S analysis results

Show results for								
FR-IMGT and CDR-IMGT 0 €	each FR-IMGT	each CDR-IMGT						
Change visibility Download							Search:	
	p	p_cor	p scarcity	p_cor scarcity	p	p cor	p excess	p_corexcess
sequence ID	binomial	binomial	multinomial	multinomial	binomial	binomial	multinomial	multinomial
tt.	FR-IMGT	FR-IMGT	FR-IMGT L	FR-IMGT I	CDR-IMGT 1	CDR-IMGT	CDR-IMGT I	CDR-IMGT
G9YJURD01DWCN1 length=490	0.0001	0.0389	0.2417	0.7676	0.0001	0.026	0.46	0.7651
G9YJURD01CN0HP length=501	0	0.0389	0.0008	0.2128	0	0.026	0.0005	0.1426
G9YJURD01DYEK4 length=480	0	0.0389	0.005	0.2504	0	0.026	0.0041	0.1794
G9YJURD01CZKQJ length=530	0	0.0389	0.0013	0.2128	0	0.026	0.0008	0.1426
G9YJURD01DCCKY length=545	0.0001	0.0389	0	0.0005	0.0001	0.026	0	0.0003

Example sequence ID: G9YJURD01DCCKY

Results for CDR-IMGT

N Jt	R observed CDR-IMGT	R expected CDR-IMGT	p binomial CDR-IMGT ↓↑	p_cor binomial CDR-IMGT ↓↑	p excess multinomial CDR-IMGT ↓↑	p_cor excess multinomial CDR-IMGT ↓↑
21	3	2.9457	0.2417	0.7676	0.46	0.7651
14	7	1.8212	0.0008	0.2128	0.0005	0.1426
24	8	2.9861	0.005	0.2504	0.0041	0.1794
14	7	1.9616	0.0013	0.2128	0.0008	0.1426
18	12	2.2025	0	0.0005	0	0.0003

Results for FR-IMGT

N Į1	R observed FR-IMGT I	R expected FR-IMGT	p binomial ↓† FR-IMGT ↓†	p_cor binomial FR-IMGT I	p scarcity multinomial FR-IMGT 1	p_cor scarcity multinomial FR-IMGT
21	4	12.9039	0.0001	0.0389	0.0001	0.026
14	1	8.6472	0	0.0389	0	0.026
24	5	14.9509	0	0.0389	0	0.026
14	1	8.5151	0	0.0389	0	0.026
18	3	11.1894	0.0001	0.0389	0.0001	0.026

nmary" file	IMGT/HighV-QUE	ST output	Int/AA mutations	analysis 🛄 V-R	EGION mutation hotspots
ClonoS3.t Choose file Upload complete	Change visibility	Download		S	Search:
t-sequences" file 0	Sequence nb 🗍	† Sequen	ce ID Iî	Functionality	V-GENE and allele
uencesClonc Troose file	31	SRR1168	790.31 G9YJURD01D43NS length=451	productive	Homsap IGHV3-30-3*01 F
opioad complete	34	SRR1168	790.34 G9YJURD01ASNNX length=443	unproductive	Homsap IGHV4-61*02 F
REGION-mutation-and-AA- ble" file 1	64	SRR1168	790.64 G9YJURD01CY5CQ length=502	productive	Homsap IGHV3-21*01 F
ION-mutatior 🖆 Choose file	69	SRR1168	790.69 G9YJURD01CPOAD length=482	productive	Homsap IGHV4-39*01 F
Upload complete	70	SRR1168	790.70 G9YJURD01B8S7W length=495	productive	Homsap IGHV1-69*12 F
EGION identity % range	80	SRR1168	790.80 G9YJURD01DXTDX length=524	productive	Homsap IGHV4-34*01 F
85 100	85	SRR1168	790.85 G9YJURD01DATKS length=490	productive	Homsap IGHV4-59*01 F
51 58 65 72 79 86 93 100	86	SRR1168	790.86 G9YJURD01CW8DC length=519	unproductive	Homsap IGHV1-2*02 F
tionality	92	SRR1168	790.92 G9YJURD01CU97P length=472	productive	Homsap IGHV3-15*01 F
Ve	94	SRR1168	790.94 G9YJURD01CMSA6 length=486	productive	Homsap IGHV1-3*02 F
ctive	108	SRR1168	790.108 G9YJURD01B56Y3 length=506	productive	Homsap IGHV1-8*01 F
ive and unproductive n	Showing 1 to 11 of 2	6,305 entries			
	Nb of mutations= 3	5224			

Conclusion

IMGT/StatMutation answers the need for somatic mutations statistical analysis from IMGT/HighV-QUEST output of high throughput IG repertoire. It provides a standardized study of mutations and AA changes which are of prime importance for the specificity and affinity of antibodies during protective (vaccination, cancers and infections) or pathogenic (autoimmunity and lymphoproliferative disorders) immune responses.

References: [1] Lefranc M-P et al., Nucleic Acids Res., 43:413-422, 2015. [2] Lefranc M-P, Front. Immunol., 5:22, 2014. [3] Alamyar E et al., Mol. Biol., 882:569-604, 2012. [4] Alamyar E et al., Immunome Res., 8(1):26, 2012. [5] Li S et al., Nat. Commun., 4:2333, 2013. [6] Giudicelli V et al., AutoImmun Infec. Dis., 1(1), 2015. [7] Giudicelli V and Lefranc M-P, Front. Genet., 3:79, 2012. [8] Chang B and Casali P, Immunol. Today, 15(8):367-373, 1994. [9] Lossos I.S et al., J., Immunol., 165(9):5122-6, 2000. [10] Hershberg U et al., Int. Immunol., 20(5):683-69, 2008.

Acknowledgments: this work was granted access to the HPC resources of HPC@LR and of CINES and TGCC-CEA under the allocation 036029-(2010-2017) made by GENCI.

IMGT[®] founder and executive director emeritus: Marie-Paule Lefranc (Marie-Paule.Lefranc@igh.cnrs.fr)

IMGT[®] director: Sofia Kossida (Sofia.Kossida@igh.cnrs.fr)

Bioinformatics manager: Véronique Giudicelli (Veroniqe.Giudicelli@igh.cnrs.fr) Computer manager: Patrice Duroux (Patrice.Duroux@igh.cnrs.fr)

 $^{\circ}$ Copyright 1989-2017 IMGT $^{\circ}$, the international ImMunoGeneTics information system $^{\circ}$